Attentional capacity matters for visuomotor adaptation to a virtual reality driving simulator

Studies have shown that adaptation to a virtual reality driving simulator takes time and that individuals differ widely in the time they need to adapt. The present study examined the relationship between attentional capacity and driving-simulator adaptation, with the hypothesis that individuals with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-11, Vol.14 (1), p.28991-13, Article 28991
Hauptverfasser: Lobjois, Régis, Mecheri, Sami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies have shown that adaptation to a virtual reality driving simulator takes time and that individuals differ widely in the time they need to adapt. The present study examined the relationship between attentional capacity and driving-simulator adaptation, with the hypothesis that individuals with better attentional capacity would exhibit more efficient adaptation to novel virtual driving circumstances. To this end, participants were asked to steer in a driving simulator through a series of 100 bends while keeping within a central demarcated zone. Adaptation was assessed from changes in steering behavior (steering performance: time spent within the zone, steering stability, steering reversal rate) over the course of the bends. Attentional capacity was assessed with two dynamic visual attention tasks (Multiple Object Tracking, MOT; Multiple Object Avoidance, MOA). Results showed effective adaptation to the simulator with repetition, as all steering-behavior variables improved. Both MOT and MOA scores significantly predicted adaptation, with MOT being a stronger predictor. Further analyses revealed that higher-capacity participants, but not their lower-capacity counterparts, produced more low-amplitude steering-wheel corrections early in the task, resulting in finer vehicle control and better performance later on. These findings provide new insights into adaptation to virtual reality simulators through the lens of attentional capacity.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-79392-1