Ex vivo anticoagulants affect human blood platelet biomechanics with implications for high-throughput functional mechanophenotyping

Inherited platelet disorders affecting the human platelet cytoskeleton result in increased bleeding risk. However, deciphering their impact on cytoskeleton-dependent intrinsic biomechanics of platelets remains challenging and represents an unmet need from a diagnostic and prognostic perspective. It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2022-01, Vol.5 (1), p.86-86, Article 86
Hauptverfasser: Sachs, Laura, Wesche, Jan, Lenkeit, Lea, Greinacher, Andreas, Bender, Markus, Otto, Oliver, Palankar, Raghavendra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inherited platelet disorders affecting the human platelet cytoskeleton result in increased bleeding risk. However, deciphering their impact on cytoskeleton-dependent intrinsic biomechanics of platelets remains challenging and represents an unmet need from a diagnostic and prognostic perspective. It is currently unclear whether ex vivo anticoagulants used during collection of peripheral blood impact the mechanophenotype of cellular components of blood. Using unbiased, high-throughput functional mechanophenotyping of single human platelets by real-time deformability cytometry, we found that ex vivo anticoagulants are a critical pre-analytical variable that differentially influences platelet deformation, their size, and functional response to agonists by altering the cytoskeleton. We applied our findings to characterize the functional mechanophenotype of platelets from a patient with Myosin Heavy Chain 9 ( MYH9 ) related macrothrombocytopenia. Our data suggest that platelets from MYH9 p.E1841K mutation in humans affecting platelet non-muscle myosin heavy chain IIa (NMMHC-IIA) are biomechanically less deformable in comparison to platelets from healthy individuals. Sachs et al. examine the effects of different ex vivo anticoagulants on the biomechanical and functional properties of single platelets using high-throughput real-time fluorescence and deformability cytometry (RT-FDC). Their results demonstrate that the choice of ex vivo anticoagulant may strongly impact the outcomes of mechanophenotyping.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-021-02982-6