Assessing Land Degradation Dynamics and Distinguishing Human-Induced Changes from Climate Factors in the Three-North Shelter Forest Region of China
Land degradation is a major threat to the sustainability of human habitation, and it is essential to assess it quantitatively. Assessment of the human-induced aspect is especially important for planning appropriate prevention measures. This paper used the Three-North Shelter Forest Program region as...
Gespeichert in:
Veröffentlicht in: | ISPRS international journal of geo-information 2016-09, Vol.5 (9), p.158-158 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Land degradation is a major threat to the sustainability of human habitation, and it is essential to assess it quantitatively. Assessment of the human-induced aspect is especially important for planning appropriate prevention measures. This paper used the Three-North Shelter Forest Program region as the study area, and assessed the land degradation dynamic using a time series of summed normalized difference vegetation index (NDVI) based on a trend analysis of the Theil-Sen slope and Mann-Kendall test. The human-induced land degradation was separated from degradation driven by climate using the meteorological dataset through the residual trend (RESTREND) method for the period 1982-2006. The results showed that (1) the NDVI in the study area mainly exhibited an increasing trend, approximately 13.00% of the study area experienced significantly positive NDVI trends and 6.20% showed decline. Furthermore, (2) the correlation between the summed NDVI and precipitation was higher than the correlation between NDVI and temperature, suggesting that precipitation was the most essential factor that impacted NDVI dynamic in the study area; (3) The significant trends of vegetation by anthropogenic disturbances were detected, which were significant positive and negative trends of 11.93% and 6.19%, respectively. All of these findings enrich our knowledge of human activities that impact land degradation in arid or semi-arid regions and provide a scientific basis for the management of ecological restoration programs. |
---|---|
ISSN: | 2220-9964 2220-9964 |
DOI: | 10.3390/ijgi5090158 |