Synthesis and evaluation of designed PKC modulators for enhanced cancer immunotherapy

Bryostatin 1 is a marine natural product under investigation for HIV/AIDS eradication, the treatment of neurological disorders, and enhanced CAR T/NK cell immunotherapy. Despite its promising activity, bryostatin 1 is neither evolved nor optimized for the treatment of human disease. Here we report t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-04, Vol.11 (1), p.1879-1879, Article 1879
Hauptverfasser: Hardman, Clayton, Ho, Stephen, Shimizu, Akira, Luu-Nguyen, Quang, Sloane, Jack L., Soliman, Mohamed S. A., Marsden, Matthew D., Zack, Jerome A., Wender, Paul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bryostatin 1 is a marine natural product under investigation for HIV/AIDS eradication, the treatment of neurological disorders, and enhanced CAR T/NK cell immunotherapy. Despite its promising activity, bryostatin 1 is neither evolved nor optimized for the treatment of human disease. Here we report the design, synthesis, and biological evaluation of several close-in analogs of bryostatin 1. Using a function-oriented synthesis approach, we synthesize a series of bryostatin analogs designed to maintain affinity for bryostatin’s target protein kinase C (PKC) while enabling exploration of their divergent biological functions. Our late-stage diversification strategy provides efficient access to a library of bryostatin analogs, which per our design retain affinity for PKC but exhibit variable PKC translocation kinetics. We further demonstrate that select analogs potently increase cell surface expression of CD22, a promising CAR T cell target for the treatment of leukemias, highlighting the clinical potential of bryostatin analogs for enhancing targeted immunotherapies. Bryostatin 1 is a unique therapeutic lead, however its scarce natural sources have hampered its use in treatment of human disease. Here, the authors use a scalable synthesis of bryostatin 1 to make close-in analogs which potently induce increased cell surface expression holding potential for immunotherapy.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15742-7