Shallow and reverse attention network for colon polyp segmentation

Polyp segmentation is challenging because the boundary between polyps and mucosa is ambiguous. Several models have considered the use of attention mechanisms to solve this problem. However, these models use only finite information obtained from a single type of attention. We propose a new dual-atten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-09, Vol.13 (1), p.15243-12, Article 15243
Hauptverfasser: Lee, Go-Eun, Cho, Jungchan, Choi, Sang-II
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyp segmentation is challenging because the boundary between polyps and mucosa is ambiguous. Several models have considered the use of attention mechanisms to solve this problem. However, these models use only finite information obtained from a single type of attention. We propose a new dual-attention network based on shallow and reverse attention modules for colon polyps segmentation called SRaNet. The shallow attention mechanism removes background noise while emphasizing the locality by focusing on the foreground. In contrast, reverse attention helps distinguish the boundary between polyps and mucous membranes more clearly by focusing on the background. The two attention mechanisms are adaptively fused using a “Softmax Gate”. Combining the two types of attention enables the model to capture complementary foreground and boundary features. Therefore, the proposed model predicts the boundaries of polyps more accurately than other models. We present the results of extensive experiments on polyp benchmarks to show that the proposed method outperforms existing models on both seen and unseen data. Furthermore, the results show that the proposed dual attention module increases the explainability of the model.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-42436-z