The analysis of “more electric engine” technology to improve the environmental performance of aircraft jet engine

In aviation, there is now a dynamic development of aircraft equipment related to the implementation of “more electric aircraft” technology. This concept offers the ability to improve the use of on-board systems, e.g. environmental operating conditions of aircraft jet engine. This technology is named...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E3S web of conferences 2018-01, Vol.46, p.29
Hauptverfasser: Henzel, Maciej, Falkowski, Krzysztof, Olejnik, Aleksander
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In aviation, there is now a dynamic development of aircraft equipment related to the implementation of “more electric aircraft” technology. This concept offers the ability to improve the use of on-board systems, e.g. environmental operating conditions of aircraft jet engine. This technology is named “more electric engine”. It allows the use of magnetic levitation technology at engine turbine shaft bearing. The development of this technology relates to the dynamic change of electronic power systems for civilian transport aircraft, the use of adaptive control methods and new materials in aviation technology. All technologies are improved the environmental operating conditions of the on-board system, e.g. operational flexibility, technological potential growth. [1] In the paper will be presented the TS-21 aircraft jet engine. This engine is modernized in the Jet Engine Laboratory of the Military University of Technology. The paper is presented a digital engine control system, the operating parameters acquisition system and magnetic bearing system. It is described the concept of active magnetic suspension of the turbine engine shaft support. The magnetic suspension technology allows eliminate mechanical bearing arrangements with an oil installation, friction forces and classical, mechanical bearings. The paper contains the simulation and experimental results of a modernized jet engine TS-21.
ISSN:2267-1242
2267-1242
DOI:10.1051/e3sconf/20184600029