Electronic correlations and flattened band in magnetic Weyl semimetal candidate Co3Sn2S2

The interplay between electronic correlations and topological protection may offer a rich avenue for discovering emergent quantum phenomena in condensed matter. However, electronic correlations have so far been little investigated in Weyl semimetals (WSMs) by experiments. Here, we report a combined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-08, Vol.11 (1), p.3985-3985, Article 3985
Hauptverfasser: Xu, Yueshan, Zhao, Jianzhou, Yi, Changjiang, Wang, Qi, Yin, Qiangwei, Wang, Yilin, Hu, Xiaolei, Wang, Luyang, Liu, Enke, Xu, Gang, Lu, Ling, Soluyanov, Alexey A., Lei, Hechang, Shi, Youguo, Luo, Jianlin, Chen, Zhi-Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interplay between electronic correlations and topological protection may offer a rich avenue for discovering emergent quantum phenomena in condensed matter. However, electronic correlations have so far been little investigated in Weyl semimetals (WSMs) by experiments. Here, we report a combined optical spectroscopy and theoretical calculation study on the strength and effect of electronic correlations in a magnet Co 3 Sn 2 S 2 . The electronic kinetic energy estimated from our optical data is about half of that obtained from single-particle ab initio calculations in the ferromagnetic ground state, which indicates intermediate-strength electronic correlations in this system. Furthermore, comparing the energy and side-slope ratios between the interband-transition peaks at high energies in the experimental and single-particle-calculation-derived optical conductivity spectra with the bandwidth-renormalization factors obtained by many-body calculations enables us to estimate the Coulomb-interaction strength ( U  ∼ 4 eV) in Co 3 Sn 2 S 2 . Besides, a sharp experimental optical conductivity peak at low energy, which is absent in the single-particle-calculation-derived spectrum but is consistent with the optical conductivity peaks obtained by many-body calculations with U  ∼ 4 eV, indicates that an electronic band connecting the two Weyl cones is flattened by electronic correlations and emerges near the Fermi energy in Co 3 Sn 2 S 2 . Our work paves the way for exploring flat-band-generated quantum phenomena in WSMs. How electron correlation interplays with topological states remains rarely explored. Here, the authors report flat band arising due to electron correlations in magnetic Weyl semimetal Co 3 Sn 2 S 2 from a combined optical-spectroscopy and simulation study.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-17234-0