CD276-CAR T cells and Dual-CAR T cells targeting CD276/FGFR4 promote rhabdomyosarcoma clearance in orthotopic mouse models
Background Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood, whose prognosis is still poor especially for metastatic, high-grade, and relapsed RMS. New treatments are urgently needed, especially systemic therapies. Chimeric Antigen Receptor T cells (CAR Ts) are very effecti...
Gespeichert in:
Veröffentlicht in: | Journal of experimental & clinical cancer research 2023-11, Vol.42 (1), p.1-293, Article 293 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood, whose prognosis is still poor especially for metastatic, high-grade, and relapsed RMS. New treatments are urgently needed, especially systemic therapies. Chimeric Antigen Receptor T cells (CAR Ts) are very effective against hematological malignancies, but their efficacy against solid tumors needs to be improved. CD276 (B7-H3) is a target upregulated in RMS and detected at low levels in normal tissues. FGFR4 is a very specific target for RMS. Here, we optimized CAR Ts for these two targets, alone or in combination, and tested their anti-tumor activity in vitro and in vivo. Methods Four different single-domain antibodies were used to select the most specific FGFR4-CAR construct. RMS cell killing and cytokine production by CD276- and FGFR4-CAR Ts expressing CD8[alpha] or CD28 HD/TM domains in combination with 4-1BB and/or CD28 co-stimulatory domains were tested in vitro. The most effective CD276- and FGFR4-CAR Ts were used to generate Dual-CAR Ts. Tumor killing was evaluated in vivo in three orthotopic RMS mouse models. Results CD276.V-CAR Ts (276.MG.CD28HD/TM.CD28CSD.3ζ) showed the strongest killing of RMS cells, and the highest release of IFN-[gamma] and Granzyme B in vitro. FGFR4.V-CAR Ts (F8-FR4.CD28HD/TM.CD28CSD.3ζ) showed the most specific killing. CD276-CAR Ts successfully eradicated RD- and Rh4-derived RMS tumors in vivo, achieving complete remission in 3/5 and 5/5 mice, respectively. In CD276.sup.low JR-tumors, however, they achieved complete remission in only 1/5 mice. FGFR4 CAR Ts instead delayed Rh4 tumor growth. Dual-CAR Ts promoted Rh4-tumors clearance in 5/5 mice. Conclusions CD276- and CD276/FGFR4-directed CAR Ts showed effective RMS cell killing in vitro and eradication of CD276.sup.high RMS tumors in vivo. CD276.sup.low tumors escaped the therapy highlighting a correlation between antigen density and effectiveness. FGFR4-CAR Ts showed specific killing in vitro but could only delay RMS growth in vivo. Our results demonstrate that combined expression of CD276-CAR with other CAR does not reduce its benefit. Introducing immunotherapy with CD276-CAR Ts in RMS seems to be feasible and promising, although CAR constructs design and target combinations have to be further improved to eradicate tumors with low target expression. Keywords: Rhabdomyosarcoma, CAR T cells, CD276 / B7-H3, FGFR4, Immunotherapy, Dual-CAR T cells |
---|---|
ISSN: | 1756-9966 0392-9078 1756-9966 |
DOI: | 10.1186/s13046-023-02838-3 |