Derivation of Three-Derivative Two-Step Runge–Kutta Methods

In this paper, we develop explicit three-derivative two-step Runge–Kutta (ThDTSRK) schemes, and propose a simpler general form of the order accuracy conditions (p≤7) by Albrecht’s approach, compared to the order conditions in terms of rooted trees. The parameters of the general high-order ThDTSRK me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-03, Vol.12 (5), p.711
Hauptverfasser: Qin, Xueyu, Yu, Jian, Yan, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we develop explicit three-derivative two-step Runge–Kutta (ThDTSRK) schemes, and propose a simpler general form of the order accuracy conditions (p≤7) by Albrecht’s approach, compared to the order conditions in terms of rooted trees. The parameters of the general high-order ThDTSRK methods are determined by utilizing the order conditions. We establish a theory for the A-stability property of ThDTSRK methods and identify optimal stability coefficients. Moreover, ThDTSRK methods can achieve the intended order of convergence using fewer stages than other schemes, making them cost-effective for solving the ordinary differential equations.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12050711