250-m Aerosol Retrieval from FY-3 Satellite in Guangzhou
Aerosol distribution with fine spatial resolution is crucial for atmospheric environmental management. This paper proposes an improved algorithm of aerosol retrieval from 250-m Medium Resolution Spectral Image (MERSI) data of Chinese FY-3 satellites. A mixing model of soil and vegetation was used to...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-03, Vol.13 (5), p.920 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aerosol distribution with fine spatial resolution is crucial for atmospheric environmental management. This paper proposes an improved algorithm of aerosol retrieval from 250-m Medium Resolution Spectral Image (MERSI) data of Chinese FY-3 satellites. A mixing model of soil and vegetation was used to calculate the parameters of the algorithm from moderate-resolution imaging spectroradiometer (MODIS) reflectance products in 500-m resolution. The mixing model was used to determine surface reflectance in blue band, and the 250-m aerosol optical depth (AOD) was retrieved through removing surface contributions from MERSI data over Guangzhou. The algorithm was used to monitor two pollution episodes in Guangzhou in 2015, and the results displayed an AOD spatial distribution with 250-m resolution. Compared with the yearly average of MODIS aerosol products in 2015, the 250-m resolution AOD derived from the MERSI data exhibited great potential for identifying air pollution sources. Daily AODs derived from MERSI data were compared with ground results from CE318 measurements. The results revealed a correlation coefficient between the AODs from MERSI and those from the ground measurements of approximately 0.85, and approximately 68% results were within expected error range of ±(0.05 + 15%τ). |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13050920 |