Synthesis and Characterization of New Polymeric Ionic Liquids as Corrosion Inhibitors for Carbon Steel in a Corrosive Medium: Experimental, Spectral, and Theoretical Studies

A novel series of polymeric ionic liquids (ILs) based on benzimidazolium chloride derivatives, namely, 1,3-diheptyl-2-(2-phenyl-propyl)-3H-benzimidazol-1-ium chloride (IL1), 1,3-dioctyl-2-(2-phenyl-propyl)-3H-benzimidazol-1-ium chloride (IL2), and 1,3-Bis-decyl-2-(2-phenyl-propyl)-3H-benzoimidazol-1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2023-11, Vol.8 (44), p.41077-41099
Hauptverfasser: Asfour, Hend, Elewady, Ghada Y., Zaki, Elsayed G., Fouda, Abd El-Aziz S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel series of polymeric ionic liquids (ILs) based on benzimidazolium chloride derivatives, namely, 1,3-diheptyl-2-(2-phenyl-propyl)-3H-benzimidazol-1-ium chloride (IL1), 1,3-dioctyl-2-(2-phenyl-propyl)-3H-benzimidazol-1-ium chloride (IL2), and 1,3-Bis-decyl-2-(2-phenyl-propyl)-3H-benzoimidazol-1-ium chloride (IL3), were synthesized and chemically elucidated by Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and elemental analysis. Their influence as corrosion suppressors were investigated for C-steel corrosion in 1 M HCl, by weight loss (WL), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) methods, revealing that their exclusive addition decreased corrosion with mounting concentrations. These assays demonstrated that novel ILs are efficient inhibitors at relatively low dosages. The efficacy of the synthesized ILs reached 79.7, 92.2 and 96.9%, respectively, at 250 ppm and 303 K. Parameters for activation and adsorption were calculated and are discussed. The Tafel polarization results demonstrated that the investigated ILs support the suppression of both cathodic and anodic reactions, acting as mixed type inhibitors. Langmuir’s adsorption isotherm was confirmed as the best fitted isotherm, describing the physical–chemical adsorption capability of used ILs on the C-steel surface with the change in the free energy of adsorption, ΔG°ads = 32.6–37.2 kJ mol–1. The efficacy of the synthesized ILs was improved by increasing the doses, and the temperature reached 86.6, 96.1, and 98.4%, respectively, at 318 K. Surface morphology was proved by Fourier Transform Infrared spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM), and then, changes in test solutions were checked by Ultraviolet–visible spectroscopy. Theoretical modeling (density functional theory and Monte Carlo) revealed the correlation between the IL’s molecular chemical structure and its anticorrosive property.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c03463