XPS Study of Mechanically Activated YBa2Cu3O6+δ and NdBa2Cu3O6+δ

Oxides RBa2Cu3O6+δ (R=Y, Nd) subjected to mechanical activation in AGO-2 mill have been studied by X-ray photoelectron spectroscopy (XPS), thermal analysis, and magnetometry. It has been shown that mechanoactivation accelerates chemical degradation under the impact of H2O and CO2 in YBa2Cu3O6+δ samp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spectroscopy (Hindawi) 2013-01, Vol.2013 (2013), p.1-13
Hauptverfasser: Kozhina, G. A., Fetisov, V. B., Fetisov, A. V., Vedmid', L. B., Uporov, S. A., Mitrofanov, V. Ya, Estemirova, S. Kh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxides RBa2Cu3O6+δ (R=Y, Nd) subjected to mechanical activation in AGO-2 mill have been studied by X-ray photoelectron spectroscopy (XPS), thermal analysis, and magnetometry. It has been shown that mechanoactivation accelerates chemical degradation under the impact of H2O and CO2 in YBa2Cu3O6+δ samples. Degradation occurs in the standard way. Investigation of mechanically activated NdBa2Cu3O6+δ has revealed other results. It has been suggested that CO2 can diffuse into its structure more freely than in YBa2Cu3O6+δ; as a result, carbonization may proceed directly in the volume of NdBa2Cu3O6+δ and independently of the hydrolysis process. In addition, the mechanism of interaction between the oxide and water is not active and not “traditional” for the homologous series REBa2Cu3O6+δ (where RE = rare earth and Y)—the characteristic “color” phase (Nd2BaCuO5) is not formed during hydrolysis. It is known that high-temperature treatment of NdBa2Cu3O6+δ oxide results in partial substitution of cations Ba by Nd; which is accompanied by decrease in the superconducting transition temperature and formation of the impurity phase Ba2Cu3O5+y. According to our data, mechanical activation of the resulting solid solution Nd1+xBa2−xCu3O6+δ unexpectedly has led to the reverse redistribution of cations, which has been manifested in the complete disappearance of the impurity phase and increase in Tc.
ISSN:2314-4920
2314-4939
DOI:10.1155/2013/217268