Economic and Energy Efficiency of Artificial Lighting Control Systems for Stairwells of Multistory Residential Buildings
The aim of the research is to determine the economic and energy efficiency usage of the artificial lighting control systems, with the help of astronomical relays and motion sensors, by various types of light sources for the stairwells (stair landings and staircases) of multistory residential buildin...
Gespeichert in:
Veröffentlicht in: | Journal of daylighting 2020-04, Vol.7 (1), p.93-106 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of the research is to determine the economic and energy efficiency usage of the artificial lighting control systems, with the help of astronomical relays and motion sensors, by various types of light sources for the stairwells (stair landings and staircases) of multistory residential buildings. The analysis of the residents’ monthly movement intensity of the 9-story residential buildings through the buildings entrance, doorways, and apartment doors was carried out. The economic and energy efficiency of use the artificial lighting control systems with an astronomical relays and motion sensors with different types of light sources was determined. Regardless of the light sources` type, the astronomical relay’s use leads to reduction in the electricity consumption of artificial lighting in 43.31% – 50.52%. Moreover, the motion sensors’ use on stairwells leads to a significant reduction in electrical energy consumption: in a case of halogen lamps – by 97.73%, compact fluorescent lamps – by 95.27%, light-emitting diodes lamps – by 93.98%. For the first time, the data of 9-story residential buildings inhabitants’ traffic intensity through the first-floor doorway for the Ternopil city, Ukraine has been carried out. It has been proved the economic feasibility and energy efficiency of using combined lighting with an artificial lighting control system for stairwells of multistory residential buildings. |
---|---|
ISSN: | 2383-8701 2383-8701 |
DOI: | 10.15627/jd.2020.8 |