A Comprehensive Study on a Deep-Learning-Based Electrocardiography Analysis for Estimating the Apnea-Hypopnea Index

This study introduces a deep-learning-based automatic sleep scoring system to detect sleep apnea using a single-lead electrocardiography (ECG) signal, focusing on accurately estimating the apnea-hypopnea index (AHI). Unlike other research, this work emphasizes AHI estimation, crucial for the diagnos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diagnostics (Basel) 2024-06, Vol.14 (11), p.1134
Hauptverfasser: Kim, Seola, Choi, Hyun-Soo, Kim, Dohyun, Kim, Minkyu, Lee, Seo-Young, Kim, Jung-Kyeom, Kim, Yoon, Lee, Woo Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study introduces a deep-learning-based automatic sleep scoring system to detect sleep apnea using a single-lead electrocardiography (ECG) signal, focusing on accurately estimating the apnea-hypopnea index (AHI). Unlike other research, this work emphasizes AHI estimation, crucial for the diagnosis and severity evaluation of sleep apnea. The suggested model, trained on 1465 ECG recordings, combines the deep-shallow fusion network for sleep apnea detection network (DSF-SANet) and gated recurrent units (GRUs) to analyze ECG signals at 1-min intervals, capturing sleep-related respiratory disturbances. Achieving a 0.87 correlation coefficient with actual AHI values, an accuracy of 0.82, an F1 score of 0.71, and an area under the receiver operating characteristic curve of 0.88 for per-segment classification, our model was effective in identifying sleep-breathing events and estimating the AHI, offering a promising tool for medical professionals.
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics14111134