Isomorphism Theorems for Groupoids and Some Applications
Using an algebraic point of view we present an introduction to the groupoid theory; that is, we give fundamental properties of groupoids as uniqueness of inverses and properties of the identities and study subgroupoids, wide subgroupoids, and normal subgroupoids. We also present the isomorphism theo...
Gespeichert in:
Veröffentlicht in: | International journal of mathematics and mathematical sciences 2020, Vol.2020 (2020), p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using an algebraic point of view we present an introduction to the groupoid theory; that is, we give fundamental properties of groupoids as uniqueness of inverses and properties of the identities and study subgroupoids, wide subgroupoids, and normal subgroupoids. We also present the isomorphism theorems for groupoids and their applications and obtain the corresponding version of the Zassenhaus Lemma and the Jordan-Hölder theorem for groupoids. Finally, inspired by the Ehresmann-Schein-Nambooripad theorem we improve a result of R. Exel concerning a one-to-one correspondence between partial actions of groups and actions of inverse semigroups. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/2020/3967368 |