Role of Förster Resonance Energy Transfer in Graphene-Based Nanomaterials for Sensing

Förster resonance energy transfer (FRET)-based fluorescence sensing of various target analytes has been of growing interest in the environmental, bioimaging, and diagnosis fields. Graphene-based zero- (0D) to two-dimensional (2D) nanomaterials, such as graphene quantum dots (GQDs), graphene oxide (G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-07, Vol.12 (14), p.6844
Hauptverfasser: Prabakaran, G., Velmurugan, K., David, C. Immanuel, Nandhakumar, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Förster resonance energy transfer (FRET)-based fluorescence sensing of various target analytes has been of growing interest in the environmental, bioimaging, and diagnosis fields. Graphene-based zero- (0D) to two-dimensional (2D) nanomaterials, such as graphene quantum dots (GQDs), graphene oxide (GO), reduced graphene oxide (rGO), and graphdiyne (GD), can potentially be employed as donors/acceptors in FRET-based sensing approaches because of their unique electronic and photoluminescent properties. In this review, we discuss the basics of FRET, as well as the role of graphene-based nanomaterials (GQDs, GO, rGO, and GD) for sensing various analytes, including cations, amino acids, explosives, pesticides, biomolecules, bacteria, and viruses. In addition, the graphene-based nanomaterial sensing strategy could be applied in environmental sample analyses, and the reason for the lower detection ranges (micro- to pico-molar concentration) could also be explained in detail. Challenges and future directions for designing nanomaterials with a new sensing approach and better sensing performance will also be highlighted.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12146844