On functional reproducing kernels
We show that even if a Hilbert space does not admit a reproducing kernel, there could still be a kernel function that realizes the Riesz representation map. Constructions in spaces that are the Fourier transform of weighted spaces are given. With a mild assumption on the weight function, we are able...
Gespeichert in:
Veröffentlicht in: | Open mathematics (Warsaw, Poland) Poland), 2023-08, Vol.21 (1), p.238-271 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that even if a Hilbert space does not admit a reproducing kernel, there could still be a kernel function that realizes the Riesz representation map. Constructions in spaces that are the Fourier transform of weighted
spaces are given. With a mild assumption on the weight function, we are able to reproduce Riesz representatives of all functionals through a limit procedure from computable integrals over compact sets, despite that the kernel is not necessarily in the underlying Hilbert space. Distributional kernels are also discussed. |
---|---|
ISSN: | 2391-5455 2391-5455 |
DOI: | 10.1515/math-2023-0102 |