On functional reproducing kernels

We show that even if a Hilbert space does not admit a reproducing kernel, there could still be a kernel function that realizes the Riesz representation map. Constructions in spaces that are the Fourier transform of weighted spaces are given. With a mild assumption on the weight function, we are able...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open mathematics (Warsaw, Poland) Poland), 2023-08, Vol.21 (1), p.238-271
1. Verfasser: Zhou, Weiqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that even if a Hilbert space does not admit a reproducing kernel, there could still be a kernel function that realizes the Riesz representation map. Constructions in spaces that are the Fourier transform of weighted spaces are given. With a mild assumption on the weight function, we are able to reproduce Riesz representatives of all functionals through a limit procedure from computable integrals over compact sets, despite that the kernel is not necessarily in the underlying Hilbert space. Distributional kernels are also discussed.
ISSN:2391-5455
2391-5455
DOI:10.1515/math-2023-0102