Deep learning application for stellar parameters determination: I-constraining the hyperparameters

Machine learning is an efficient method for analysing and interpreting the increasing amount of astronomical data that are available. In this study, we show a pedagogical approach that should benefit anyone willing to experiment with deep learning techniques in the context of stellar parameter deter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open astronomy 2022-02, Vol.31 (1), p.38-57
Hauptverfasser: Gebran, Marwan, Connick, Kathleen, Farhat, Hikmat, Paletou, Frédéric, Bentley, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning is an efficient method for analysing and interpreting the increasing amount of astronomical data that are available. In this study, we show a pedagogical approach that should benefit anyone willing to experiment with deep learning techniques in the context of stellar parameter determination. Using the convolutional neural network architecture, we give a step-by-step overview of how to select the optimal parameters for deriving the most accurate values for the stellar parameters of stars: , , [M/H], and . Synthetic spectra with random noise were used to constrain this method and to mimic the observations. We found that each stellar parameter requires a different combination of network hyperparameters and the maximum accuracy reached depends on this combination as well as the signal-to-noise ratio of the observations, and the architecture of the network. We also show that this technique can be applied to other spectral-types in different wavelength ranges after the technique has been optimized.
ISSN:2543-6376
2543-6376
DOI:10.1515/astro-2022-0007