A 3D Surface Reconstruction Pipeline for Plant Phenotyping
Plant phenotyping plays a crucial role in crop science and plant breeding. However, traditional methods often involve time-consuming and manual observations. Therefore, it is essential to develop automated, sensor-driven techniques that can provide objective and rapid information. Various methods re...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-12, Vol.16 (24), p.4720 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plant phenotyping plays a crucial role in crop science and plant breeding. However, traditional methods often involve time-consuming and manual observations. Therefore, it is essential to develop automated, sensor-driven techniques that can provide objective and rapid information. Various methods rely on camera systems, including RGB, multi-spectral, and hyper-spectral cameras, which offer valuable insights into plant physiology. In recent years, 3D sensing systems such as laser scanners have gained popularity due to their ability to capture structural plant parameters that are difficult to obtain using spectral sensors. Unlike images, point clouds are not structured and require pre-processing steps to extract precise information and handle noise or missing points. One approach is to generate mesh-based surface representations using triangulation. A key challenge in the 3D surface reconstruction of plants is the pre-processing of point clouds, which involves removing non-plant noise from the scene, segmenting point clouds from populations to individual plants, and further dividing individual plants into their respective organs. In this study, we will not focus on the segmentation aspect but rather on the other pre-processing steps, like denoising parameters, which depend on the data type. We present an automated pipeline for converting high-resolution point clouds into surface models of plants. The pipeline incorporates additional pre-processing steps such as outlier removal, denoising, and subsampling to ensure the accuracy and quality of the reconstructed surfaces. Data were collected using three different sensors: a handheld scanner, a terrestrial laser scanner (TLS), and a mobile mapping platform, under varying conditions from controlled laboratory environments to complex field settings. The investigation includes five different plant species, each with distinct characteristics, to demonstrate the potential of the pipeline. In a next step, phenotypic traits such as leaf area, leaf area index (LAI), and leaf angle distribution (LAD) were calculated to further illustrate the pipeline’s potential and effectiveness. The pipeline is based on the Open3D framework and is available open source. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16244720 |