Gi/o protein-coupled receptor inhibition of beta-cell electrical excitability and insulin secretion depends on Na+/K+ ATPase activation
G i/o -coupled somatostatin or α2-adrenergic receptor activation stimulated β-cell NKA activity, resulting in islet Ca 2+ fluctuations. Furthermore, intra-islet paracrine activation of β-cell G i/o -GPCRs and NKAs by δ-cell somatostatin secretion slowed Ca 2+ oscillations, which decreased insulin se...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-10, Vol.13 (1), p.6461-18, Article 6461 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | G
i/o
-coupled somatostatin or α2-adrenergic receptor activation stimulated β-cell NKA activity, resulting in islet Ca
2+
fluctuations. Furthermore, intra-islet paracrine activation of β-cell G
i/o
-GPCRs and NKAs by δ-cell somatostatin secretion slowed Ca
2+
oscillations, which decreased insulin secretion. β-cell membrane potential hyperpolarization resulting from G
i/o
-GPCR activation was dependent on NKA phosphorylation by Src tyrosine kinases. Whereas, β-cell NKA function was inhibited by cAMP-dependent PKA activity. These data reveal that NKA-mediated β-cell membrane potential hyperpolarization is the primary and conserved mechanism for G
i/o
-GPCR control of electrical excitability, Ca
2+
handling, and insulin secretion.
G
i/o
protein-coupled receptors (G
i/o
-GPCRs) limit β-cell insulin secretion by decreasing Ca
2+
entry; however, the underlying mechanism has not been identified. Here, the authors show that G
i/o
-GPCRs hyperpolarize mouse and human β-cell membrane potential by activating Na
+
/K
+
ATPases. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-34166-z |