Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells

Wnt-11 is a secreted protein that modulates cell growth, differentiation and morphogenesis during development. We previously reported that Wnt-11 expression is elevated in hormone-independent prostate cancer and that the progression of prostate cancer from androgen-dependent to androgen-independent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cancer 2010-03, Vol.9 (1), p.55-55
Hauptverfasser: Uysal-Onganer, Pinar, Kawano, Yoshiaki, Caro, Mercedes, Walker, Marjorie M, Diez, Soraya, Darrington, R Siobhan, Waxman, Jonathan, Kypta, Robert M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wnt-11 is a secreted protein that modulates cell growth, differentiation and morphogenesis during development. We previously reported that Wnt-11 expression is elevated in hormone-independent prostate cancer and that the progression of prostate cancer from androgen-dependent to androgen-independent proliferation correlates with a loss of mutual inhibition between Wnt-11- and androgen receptor-dependent signals. However, the prevalence of increased expression of Wnt-11 in patient tumours and the functions of Wnt-11 in prostate cancer cells were not known. Wnt-11 protein levels in prostate tumours were determined by immunohistochemical analysis of prostate tumour tissue arrays. Wnt-11 protein was elevated in 77/117 of tumours when compared with 27 benign prostatic hypertrophy specimens and was present in 4/4 bone metastases. In addition, there was a positive correlation between Wnt-11 expression and PSA levels above 10 ng/ml. Androgen-depleted LNCaP prostate cancer cells form neurites and express genes associated with neuroendocrine-like differentiation (NED), a feature of prostate tumours that have a poor prognosis. Since androgen-depletion increases expression of Wnt-11, we examined the role of Wnt-11 in NED. Ectopic expression of Wnt-11 induced expression of NSE and ASCL1, which are markers of NED, and this was prevented by inhibitors of cyclic AMP-dependent protein kinase, consistent with the known role of this kinase in NED. In contrast, Wnt-11 did not induce NSE expression in RWPE-1 cells, which are derived from benign prostate, suggesting that the role of Wnt-11 in NED is specific to prostate cancer. In addition, silencing of Wnt-11 expression in androgen-depleted LNCaP cells prevented NED and resulted in apoptosis. Silencing of Wnt-11 gene expression in androgen-independent PC3 cells also reduced expression of NSE and increased apoptosis. Finally, silencing of Wnt-11 reduced PC3 cell migration and ectopic expression of Wnt-11 promoted LNCaP cell invasion. These observations suggest that the increased level of Wnt-11 found in prostate cancer contributes to tumour progression by promoting NED, tumour cell survival and cell migration/invasion, and may provide an opportunity for novel therapy in prostate cancer.
ISSN:1476-4598
1476-4598
DOI:10.1186/1476-4598-9-55