VIPER: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies

We develop a method, VIPER, to impute the zero values in single-cell RNA sequencing studies to facilitate accurate transcriptome quantification at the single-cell level. VIPER is based on nonnegative sparse regression models and is capable of progressively inferring a sparse set of local neighborhoo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2018-11, Vol.19 (1), p.196-196, Article 196
Hauptverfasser: Chen, Mengjie, Zhou, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a method, VIPER, to impute the zero values in single-cell RNA sequencing studies to facilitate accurate transcriptome quantification at the single-cell level. VIPER is based on nonnegative sparse regression models and is capable of progressively inferring a sparse set of local neighborhood cells that are most predictive of the expression levels of the cell of interest for imputation. A key feature of our method is its ability to preserve gene expression variability across cells after imputation. We illustrate the advantages of our method through several well-designed real data-based analytical experiments.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-018-1575-1