Calculation of View Factors for Building Simulations with an Open-Source Raytracing Tool

Longwave radiative heat transfer is a key determinant of energy consumption in buildings and view factor calculations are therefore required for the detailed simulation of heat transfer between buildings and their environment as well as for heat exchange within rooms. Typically, these calculations a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-03, Vol.12 (6), p.2768
Hauptverfasser: Subramaniam, Sarith, Hoffmann, Sabine, Thyageswaran, Sridhar, Ward, Greg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Longwave radiative heat transfer is a key determinant of energy consumption in buildings and view factor calculations are therefore required for the detailed simulation of heat transfer between buildings and their environment as well as for heat exchange within rooms. Typically, these calculations are either derived through analytical means or performed as a part of the simulation process. This paper describes the methodology for employing RADIANCE, a command-line open-source raytracing software, for performing view factor calculations. Since it was introduced in the late-1980s, RADIANCE has been almost exclusively employed as the back-end engine for lighting simulations. We discuss the theoretical basis for calculating view factors through Monte Carlo calculations with RADIANCE and propose a corresponding workflow. The results generated through RADIANCE are validated by comparing them with analytical solutions. The fundamental methodology proposed in this paper can be scaled up to calculate view factors for more complex, practical scenarios. Furthermore, the portability, multi-processing functionality and cross-platform compatibility offered by RADIANCE can also be employed in the calculation of view factors.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12062768