Measurement of Countable Compactness and Lindelöf Property in RL-Fuzzy Topological Spaces
Based on the concepts of pseudocomplement of L-subsets and the implication operator where L is a completely distributive lattice with order-reversing involution, the definition of countable RL-fuzzy compactness degree and the Lindelöf property degree of an L-subset in RL-fuzzy topology are introduce...
Gespeichert in:
Veröffentlicht in: | Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the concepts of pseudocomplement of L-subsets and the implication operator where L is a completely distributive lattice with order-reversing involution, the definition of countable RL-fuzzy compactness degree and the Lindelöf property degree of an L-subset in RL-fuzzy topology are introduced and characterized. Since L-fuzzy topology in the sense of Kubiak and Šostak is a special case of RL-fuzzy topology, the degrees of RL-fuzzy compactness and the Lindelöf property are generalizations of the corresponding degrees in L-fuzzy topology. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2021/6627372 |