The mechanism of joint effects of axial-flow pump cavitation and sediment wear

This article studies the flow trajectories and the wear law of sediment particles in a pump considering multiple variables, such as sediment concentration, particle size, and cavitation stage. In addition, the mechanism of joint effects of cavitation and sediment wear of the axial-flow pump is explo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mechanical engineering 2020-05, Vol.12 (5)
Hauptverfasser: Lin, Peng, Hu, Dong, Lin, Zi-jun, Liu, Mei-qing, Tang, Chuan-lin, Wang, Shu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article studies the flow trajectories and the wear law of sediment particles in a pump considering multiple variables, such as sediment concentration, particle size, and cavitation stage. In addition, the mechanism of joint effects of cavitation and sediment wear of the axial-flow pump is explored. In this work, the characteristics of cavitation and sediment wear in an axial-flow pump are investigated by the numerical simulation using shear stress transport k–ω turbulence model with experimental validation. The external characteristics of experimental results and numerical simulations are in agreement. The results show that the sediment concentration exerts a profound influence on the vacuole distribution in the pump, while the particle size has little effect on it. Cavitation can increase the volume fraction of the solid, accelerate the wear on the components, and affect the sediment distribution in the impeller. Cavitation and sediment wear are mutually worsening, and their joint effects will form a vicious circle. With the decrease in inlet pressure and the increase in sediment concentration and particle size, the maximum wear rate will gradually increase, which proves that cavitation, sediment concentration, and particle size are the main factors that influence the maximum wear rate.
ISSN:1687-8132
1687-8140
DOI:10.1177/1687814020923066