A Lightweight Forest Scene Image Dehazing Network Based on Joint Image Priors
Fog interference is an unfavorable issue when using vision sensors to monitor forest environmental resources. The existence of fog causes intelligent forest vision sensor equipment to fail to obtain accurate information on environmental resources. Therefore, this study proposes a lightweight forest...
Gespeichert in:
Veröffentlicht in: | Forests 2023-10, Vol.14 (10), p.2062 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fog interference is an unfavorable issue when using vision sensors to monitor forest environmental resources. The existence of fog causes intelligent forest vision sensor equipment to fail to obtain accurate information on environmental resources. Therefore, this study proposes a lightweight forest scene image dehazing network to remove fog interference from the vision system. To deal with the extraction of detailed forest image features, we propose utilizing joint image priors including white balance, contrast, and gamma correction feature maps as inputs of the network to strengthen the learning ability of the deep network. Focusing on reducing the computational cost of the network, four different kinds of Ghost Bottleneck blocks, which adopt an SE attention mechanism to better learn the abundant forest image features for our network, are adopted. Moreover, a lightweight upsampling module combining a bilinear interpolation method and a convolution operation is proposed, thus reducing the computing space used by the fog removal module in the intelligent equipment. In order to adapt to the unique color and texture features of forest scene images, the cost function consisting of L1 loss and multi-scale structural similarity (MS-SSIM) loss is specially designed to train the proposed network. The experimental results show that our proposed method obtains more natural visual effects and better evaluation indices. The proposed network is trained both on indoor and outdoor synthetic datasets and tested on synthetic and real foggy images. The PSNR achieves an average value of 26.00 dB and SSIM achieves 0.96 on the indoor synthetic dataset, while PSNR achieves an average value of 25.58 dB and SSIM achieves 0.94 on the outdoor synthetic test images. The average processing time of our proposed dehazing network for a single foggy image with a size of 480 × 640 is 0.26 s. |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f14102062 |