Exploring Data Provenance in Handwritten Text Recognition Infrastructure: Sharing and Reusing Ground Truth Data, Referencing Models, and Acknowledging Contributions. Starting the Conversation on How We Could Get It Done

This paper discusses best practices for sharing and reusing Ground Truth in Handwritten Text Recognition infrastructures, as well as ways to reference and acknowledge contributions to the creation and enrichment of data within these systems. We discuss how one can place Ground Truth data in a reposi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of data mining and digital humanities 2024-03, Vol.Historical Documents and...
Hauptverfasser: Romein, C. Annemieke, Hodel, Tobias, Gordijn, Femke, Zundert, Joris J. van, Chagué, Alix, Lange, Milan van, Jensen, Helle Strandgaard, Stauder, Andy, Purcell, Jake, Terras, Melissa M., Heuvel, Pauline van den, Keijzer, Carlijn, Rabus, Achim, Sitaram, Chantal, Bhatia, Aakriti, Depuydt, Katrien, Afolabi-Adeolu, Mary Aderonke, Anikina, Anastasiia, Bastianello, Elisa, Benzinger, Lukas Vincent, Bosse, Arno, Brown, David, Charlton, Ash, Dannevig, André Nilsson, Gelder, Klaas van, Go, Sabine C.P.J., Goh, Marcus J.C., Gstrein, Silvia, Hasan, Sewa, Heide, Stefan von der, Hindermann, Maximilian, Huff, Dorothee, Huysman, Ineke, Idris, Ali, Keijzer, Liesbeth, Kemper, Simon, Koenders, Sanne, Kuijpers, Erika, Rønsig Larsen, Lisette, Lepa, Sven, Link, Tommy O., Nispen, Annelies van, Nockels, Joe, Noort, Laura M. van, Oosterhuis, Joost Johannes, Popken, Vivien, Estrella Puertollano, María, Puusaag, Joosep J., Sheta, Ahmed, Stoop, Lex, Strutzenbladh, Ebba, Sijs, Nicoline van der, Spek, Jan Paul van der, Trouw, Barry Benaissa, Van Synghel, Geertrui, Vučković, Vladimir, Wilbrink, Heleen, Weiss, Sonia, Wrisley, David Joseph, Zweistra, Riet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses best practices for sharing and reusing Ground Truth in Handwritten Text Recognition infrastructures, as well as ways to reference and acknowledge contributions to the creation and enrichment of data within these systems. We discuss how one can place Ground Truth data in a repository and, subsequently, inform others through HTR-United. Furthermore, we want to suggest appropriate citation methods for ATR data, models, and contributions made by volunteers. Moreover, when using digitised sources (digital facsimiles), it becomes increasingly important to distinguish between the physical object and the digital collection. These topics all relate to the proper acknowledgement of labour put into digitising, transcribing, and sharing Ground Truth HTR data. This also points to broader issues surrounding the use of machine learning in archival and library contexts, and how the community should begin to acknowledge and record both contributions and data provenance.
ISSN:2416-5999
2416-5999
DOI:10.46298/jdmdh.10403