Addressing Bias in Machine Learning Algorithms: Promoting Fairness and Ethical Design

Machine learning algorithms have quickly risen to the top of several fields' decision-making processes in recent years. However, it is simple for these algorithms to confirm already present prejudices in data, leading to biassed and unfair choices. In this work, we examine bias in machine learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E3S web of conferences 2024-01, Vol.491, p.2040
Hauptverfasser: Dhabliya, Dharmesh, Dari, Sukhvinder Singh, Dhablia, Anishkumar, Akhila, N., Kachhoria, Renu, Khetani, Vinit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning algorithms have quickly risen to the top of several fields' decision-making processes in recent years. However, it is simple for these algorithms to confirm already present prejudices in data, leading to biassed and unfair choices. In this work, we examine bias in machine learning in great detail and offer strategies for promoting fair and moral algorithm design. The paper then emphasises the value of fairnessaware machine learning algorithms, which aim to lessen bias by including fairness constraints into the training and evaluation procedures. Reweighting, adversarial training, and resampling are a few strategies that could be used to overcome prejudice. Machine learning systems that better serve society and respect ethical ideals can be developed by promoting justice, transparency, and inclusivity. This paper lays the groundwork for researchers, practitioners, and policymakers to forward the cause of ethical and fair machine learning through concerted effort.
ISSN:2267-1242
2267-1242
DOI:10.1051/e3sconf/202449102040