An In vitro and in silico investigation of the antitrypanosomal activities of the stem bark extracts of Anopyxis klaineana (Pierre) Engl

African Trypanosomiasis caused by trypanosome parasites continues to be a major neglected health problem, particularly in developing countries. Current treatments are marked by serious side effects, low effectiveness, high toxicity, and drug resistance prompting the need to develop novel, safe, effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-03, Vol.10 (6), p.e28025-e28025, Article e28025
Hauptverfasser: Adams, Latif, Obiri-Yeboah, Dorcas, Afiadenyo, Michael, Hamidu, Sherif, Aning, Abigail, Ehun, Ebenezer, Shiels, Katie, Joshi, Akanksha, Mamfe Sakyimah, Maxwell, Asamoah Kusi, Kwadwo, Ayi, Irene, Mckeon Bennett, Michelle, Moane, Siobhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:African Trypanosomiasis caused by trypanosome parasites continues to be a major neglected health problem, particularly in developing countries. Current treatments are marked by serious side effects, low effectiveness, high toxicity, and drug resistance prompting the need to develop novel, safe, effective, and alternative antitrypanosomal compounds. Anopyxis klaineana is an ethnomedicinal plant used in West Africa to treat many ailments including protozoan diseases. In this study, we investigated the antitrypanosomal potential of stem bark extracts of A. klaineana through in vitro and in silico approaches. A. klaineana extracts were tested for their antitrypanosomal activities against Trypanosoma brucei parasite in vitro using Alamar blue assay. In addition, the antioxidant and cytotoxic activities were determined. LC-ESI-QTOF-MS was used to identify potential bioactive compounds present in the A. klaineana extracts. Bioactive compounds identified were subjected to molecular docking studies against Trypanosoma brucei's trypanothione reductase (TR) and Uridine Diphosphate Galactose 4′-Epimerase (UDP). The A. klaineana extracts (methanol, hexane, chloroform, and ethyl acetate) exhibited potential anti-trypanosomal activities with IC50 values of 21.25 ± 0.755,4.35 ± 0.166,2.57 ± 0.153 and 22.92 ± 2.321 μg/mL respectively. Moreover, the methanolic crude extracts showed moderate cytotoxicity against HepG2 and PNT2 cells, with IC50 values of 68.0 ± 2.05 and 78.7 ± 2.63 μg/mL respectively. LC-MS analysis revealed the presence of 24 bioactive compounds with 5 being druglike. Risperidone, Ranolazine, Dihydro-7-Desacetyldeoxygedunin, 6 beta-Hydroxytriamcinolone acetonide, and Dimethylmatairesinol were identified as novel potential inhibitors of TR and UDP with binding affinities of −10.4, −7.9, −8.7, −8.4 and −7.1 kcal/mol respectively against TR and −10.8, −8.4, −8.4, −7.6 and −8.1 respectively against UDP. This study indicates that A. klaineana has potential antitrypanosomal properties and therefore may have the potential to be developed as a therapeutic intervention for treating African trypanosomiasis. [Display omitted]
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e28025