Application of TiO2 nanotubes as photocatalysts for decolorization of synthetic dye wastewater

Titanium dioxide (TiO2) nanotubes were synthesized using thin titanium sheets instead of conventional titanium foil by electrochemical anodization under voltages of 20, 30, 40, and 50 V. The higher anodization voltages increased the inner diameter and depth of the TiO2 nanotubes but decreased the wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources and industry 2021-12, Vol.26, p.100163, Article 100163
Hauptverfasser: Rojviroon, Thammasak, Rojviroon, Orawan, Sirivithayapakorn, Sanya, Angthong, Sivakorn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Titanium dioxide (TiO2) nanotubes were synthesized using thin titanium sheets instead of conventional titanium foil by electrochemical anodization under voltages of 20, 30, 40, and 50 V. The higher anodization voltages increased the inner diameter and depth of the TiO2 nanotubes but decreased the wall thickness. The anodization influenced the oxidation of titanium to form TiO2 on the surface of the thin titanium sheets. The TiO2 nanotubes anodized at 50 V achieved the highest decolorization efficiencies of 74.14% and 65.71% for indigo carmine (IC) and reactive black 5 (RB5), respectively, under 180-min UVA irradiation and 4-μM initial dye concentration. The transformation of dyes into structures with simpler by-products was observed. The kinetics of the process were characterized using the Langmuir–Hinshelwood (L–H) model. The highest specific reaction rates were 1.33 and 0.77 min-1 W-1 for IC and RB5, respectively. The L–H reaction rate constants were compared with the first-order reaction rate constants. [Display omitted] •Synthesized TiO2 nanotubes on the surface of titanium thin sheets.•Performance and kinetic of photocatalytic process to degrade the complex-structure dye precursors.•Monitoring of the transfiguration of dye into by-products of less complex structure throughout the experiment.
ISSN:2212-3717
2212-3717
DOI:10.1016/j.wri.2021.100163