Distributed Stochastic Subgradient Projection Algorithms Based on Weight-Balancing over Time-Varying Directed Graphs
We consider a distributed constrained optimization problem over graphs, where cost function of each agent is private. Moreover, we assume that the graphs are time-varying and directed. In order to address such problem, a fully decentralized stochastic subgradient projection algorithm is proposed ove...
Gespeichert in:
Veröffentlicht in: | Complexity (New York, N.Y.) N.Y.), 2019, Vol.2019 (2019), p.1-16 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a distributed constrained optimization problem over graphs, where cost function of each agent is private. Moreover, we assume that the graphs are time-varying and directed. In order to address such problem, a fully decentralized stochastic subgradient projection algorithm is proposed over time-varying directed graphs. However, since the graphs are directed, the weight matrix may not be a doubly stochastic matrix. Therefore, we overcome this difficulty by using weight-balancing technique. By choosing appropriate step-sizes, we show that iterations of all agents asymptotically converge to some optimal solutions. Further, by our analysis, convergence rate of our proposed algorithm is O(ln Γ/Γ) under local strong convexity, where Γ is the number of iterations. In addition, under local convexity, we prove that our proposed algorithm can converge with rate O(ln Γ/Γ). In addition, we verify the theoretical results through simulations. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2019/8030792 |