Optimization Model and Algorithm of Logistics Vehicle Routing Problem under Major Emergency

The novel coronavirus pandemic is a major global public health emergency, and has presented new challenges and requirements for the timely response and operational stability of emergency logistics that were required to address the major public health events outbreak in China. Based on the problems o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-03, Vol.11 (5), p.1274
Hauptverfasser: Tan, Kangye, Liu, Weihua, Xu, Fang, Li, Chunsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The novel coronavirus pandemic is a major global public health emergency, and has presented new challenges and requirements for the timely response and operational stability of emergency logistics that were required to address the major public health events outbreak in China. Based on the problems of insufficient timeliness and high total system cost of emergency logistics distribution in major epidemic situations, this paper takes the minimum vehicle distribution travel cost, time cost, early/late punishment cost, and fixed cost of the vehicle as the target, the soft time window for receiving goods at each demand point, the rated load of the vehicle, the volume, maximum travel of the vehicle in a single delivery as constraints, and an emergency logistics vehicle routing problem optimization model for major epidemics was constructed. The convergence speed improvement strategy, particle search improvement strategy, and elite retention improvement strategy were introduced to improve the particle swarm optimization (PSO) algorithm for it to be suitable for solving global optimization problems. The simulation results prove that the improved PSO algorithm required to solve the emergency medical supplies logistics vehicle routing problem for the major emergency can reach optimal results. Compared with the basic PSO algorithm, the total cost was reduced by 20.09%.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11051274