Li–He’s modified homotopy perturbation method coupled with the energy method for the dropping shock response of a tangent nonlinear packaging system
This paper couples Li–He’s homotopy perturbation method with the energy method to obtain an approximate solution of a tangent nonlinear packaging system. A higher order homotopy equation is constructed by adopting the basic idea of the Li–He’s homotopy perturbation method. The energy method is used...
Gespeichert in:
Veröffentlicht in: | Journal of low frequency noise, vibration, and active control vibration, and active control, 2021-06, Vol.40 (2), p.675-682 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper couples Li–He’s homotopy perturbation method with the energy method to obtain an approximate solution of a tangent nonlinear packaging system. A higher order homotopy equation is constructed by adopting the basic idea of the Li–He’s homotopy perturbation method. The energy method is used to improve the maximal displacement and the frequency of the system to an ever higher accuracy. Comparison with the numerical solution obtained by the Runge–Kutta method shows that the shock responses of the system solved by the new method are more effective with a relative error of 0.15%. |
---|---|
ISSN: | 1461-3484 2048-4046 |
DOI: | 10.1177/1461348420914457 |