Dynamics of a damped quintic wave equation with time-dependent coefficients
We present a comprehensive investigation of the long-term dynamics generated by a semilinear wave equation with time-dependent coefficients and quintic nonlinearity on a bounded domain subject to Dirichlet boundary conditions. By employing rescaling techniques for time and utilizing the Strichartz e...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2024-01, Vol.9 (9), p.24677-24698 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a comprehensive investigation of the long-term dynamics generated by a semilinear wave equation with time-dependent coefficients and quintic nonlinearity on a bounded domain subject to Dirichlet boundary conditions. By employing rescaling techniques for time and utilizing the Strichartz estimates applicable to bounded domains, we initially study the global well-posedness of the Shatah–Struwe (S–S) solutions. Subsequently, we establish the existence of a uniform weak global attractor consisting of points on complete bounded trajectories through an approach based on evolutionary systems. Finally, we prove that this uniformly weak attractor is indeed strong by means of a backward asymptotic a priori estimate and the so-called energy method. Moreover, the smoothness of the obtained attractor is also shown with the help of a decomposition technique. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.20241202 |