Assessment of Dredging Scenarios for a Tidal Inlet in a High-Energy Coast
The high energetic wave climate of the North Atlantic Ocean causes important morphological changes at Figueira da Foz coastal system (W Portugal), which is comprised of sandy beaches and the Mondego estuary-inlet. The submerged sandbar at the inlet mouth is highly dynamic inducing short waves shoali...
Gespeichert in:
Veröffentlicht in: | Journal of marine science and engineering 2019-11, Vol.7 (11), p.395 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The high energetic wave climate of the North Atlantic Ocean causes important morphological changes at Figueira da Foz coastal system (W Portugal), which is comprised of sandy beaches and the Mondego estuary-inlet. The submerged sandbar at the inlet mouth is highly dynamic inducing short waves shoaling and breaking processes that can entail navigation problems towards the local harbor. Therefore, coastal dredging operations are performed to guarantee safe navigation. Nevertheless, these operations have a limited temporal effectiveness and require a high annual budget to be accomplished. The goal of this research is to seek long-life dredging alternatives using modeling tools (i.e., Delft3D model suite). Delft3D model is used to simulate the morphological evolution of five dredging scenarios during a three-month winter period under three wave climate scenarios. The bed level differences at the dredged area and at the inlet mouth for each scenario are analyzed in comparison with numerical solutions obtained in a reference scenario (i.e., no-dredging). Results highlight morphological changes at the dredged inlet and surrounding areas and their effectiveness in extending the operational lifetime of inlet dredged operations on dredging configuration and wave climate conditions. These findings are the basis for selecting the most suitable dredging scenario to this coastal region under current wave climate conditions. |
---|---|
ISSN: | 2077-1312 2077-1312 |
DOI: | 10.3390/jmse7110395 |