Exploring causal components of plasticity in grey seal birthdates: Effects of intrinsic traits, demography, and climate
Change in breeding phenology is often a response to environmental forcing, but less is known of the mechanism underlying such changes and their fitness consequences. Here, we report on changes in the breeding phenology from a 27‐year longitudinal study (1991–2017) of individually marked, known‐aged...
Gespeichert in:
Veröffentlicht in: | Ecology and evolution 2020-10, Vol.10 (20), p.11507-11522 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Change in breeding phenology is often a response to environmental forcing, but less is known of the mechanism underlying such changes and their fitness consequences. Here, we report on changes in the breeding phenology from a 27‐year longitudinal study (1991–2017) of individually marked, known‐aged grey seals (Halichoerus grypus) on Sable Island, Nova Scotia, Canada. We used generalized linear mixed models and a 3‐step process to develop a model that includes interactions between intrinsic and extrinsic covariates and to test hypotheses about the influence of fixed factors (maternal age, parity, previous reproductive success, pup sex, colony density, Atlantic Multidecal Oscillation (AMO), North Atlantic Oscillation (NAO), and Sea Surface Temperature) and a random factor (female identity) on parturition dates. We also examined the consequences of the shift in birthdates on maternal energy allocation in offspring as measured by pup weaning mass. Birthdates were known for 2,768 pups of 660 known‐age females. For 494 females with ≥2 parturition dates, repeatability as measured by the intraclass correlation was high (mean = 0.66). 87% of the variation in birthdates was explained by a mixed‐effects model that included intrinsic and extrinsic fixed effects. Most of the explained variation was associated with the random effect of female identity. Parity was the most important intrinsic fixed effect, with inexperienced mothers giving birth later in the season than multiparous females. Over almost 3 decades, mean birthdates advanced by 15 days. The mixed model with intrinsic effects and population size, the detrended AMO from the previous year and mean NAO in the previous 3 years explained 80% of the variation with 21% of variation from the fixed effects. Both primiparous and multiparous individuals responded to the climate forcing, and there was strong evidence for heterogeneity in the response. Nevertheless, the shift in birthdates did not impact pup weaning mass.
Here, we studied how breeding phenology responds to maternal traits and demographic and environmental conditions over almost three decades and the resulting fitness consequences of those changes in a well‐studied population of grey seals. Mean birthdates advanced by 15 days. Longitudinal data on over 500 individual females showed that maternal birthdates were highly repeatable but despite that repeatability females responded to environmental forcing. Both primiparous and multiparous individuals responded |
---|---|
ISSN: | 2045-7758 2045-7758 |
DOI: | 10.1002/ece3.6787 |