Direct Visualization of Charge Migration in Bilayer Tantalum Oxide Films by Multimodal Imaging
Inspired by biological neuromorphic computing, artificial neural networks based on crossbar arrays of bilayer tantalum oxide memristors have shown to be promising alternatives to conventional complementary metal‐oxide‐semiconductor (CMOS) architectures. In order to understand the driving mechanism i...
Gespeichert in:
Veröffentlicht in: | Advanced electronic materials 2024-01, Vol.10 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inspired by biological neuromorphic computing, artificial neural networks based on crossbar arrays of bilayer tantalum oxide memristors have shown to be promising alternatives to conventional complementary metal‐oxide‐semiconductor (CMOS) architectures. In order to understand the driving mechanism in these oxide systems, tantalum oxide films are resistively switched by conductive atomic force microscopy (C‐AFM), and subsequently imaged by kelvin probe force microscopy (KPFM) and spatially resolved time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). These workflows enable induction and analysis of the resistive switching mechanism as well as control over the resistively switched region of the film. In this work it is shown that the resistive switching mechanism is driven by both current and electric field effects. Reversible oxygen motion is enabled by applying low (1 V). Fully understanding oxygen motion and electrical effects in bilayer oxide memristor systems is a fundamental step toward the adoption of memristors as a neuromorphic computing technology. |
---|---|
ISSN: | 2199-160X 2199-160X |
DOI: | 10.1002/aelm.202300589 |