Development of a Charge-Multiplication CMOS Image Sensor Based on Capacitive Trench for Low-Light-Level Imaging

This paper presents an electron multiplication charge coupled device (EMCCD) based on capacitive deep trench isolation (CDTI) and developed using complementary metal oxide semiconductor (CMOS) technology. The CDTI transfer register offers a charge transfer inefficiency lower than 10-4 and a low dark...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-11, Vol.23 (23), p.9518
Hauptverfasser: Marcelot, Olivier, Morvan, Marjorie, Salih Alj, Antoine, Demiguel, Stephane, Virmontois, Cedric, Rouvie, Anne, Estribeau, Magali, Goiffon, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an electron multiplication charge coupled device (EMCCD) based on capacitive deep trench isolation (CDTI) and developed using complementary metal oxide semiconductor (CMOS) technology. The CDTI transfer register offers a charge transfer inefficiency lower than 10-4 and a low dark current o 0.11nA/cm2 at room temperature. In this work, the timing diagram is adapted to use this CDTI transfer register in an electron multiplication mode. The results highlight some limitations of this device in such an EM configuration: for instance, an unexpected increase in the dark current is observed. A design modification is then proposed to overcome these limitations and rely on the addition of an electrode on the top of the register. Thus, this new device preserves the good transfer performance of the register while adding an electron multiplication function. Technology computer-aided design (TCAD) simulations in 2D and 3D are performed with this new design and reveal a very promising structure.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23239518