Exploring the Synergies between Urban Overheating and Heatwaves (HWs) in Western Sydney

There is no consensus regarding the change of magnitude of urban overheating during HW periods, and possible interactions between the two phenomena are still an open question, despite the increasing frequency and impacts of Heatwaves (HW). The purpose of this study is to explore the interactions bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2020-01, Vol.13 (2), p.470
Hauptverfasser: Khan, Hassan Saeed, Paolini, Riccardo, Santamouris, Mattheos, Caccetta, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is no consensus regarding the change of magnitude of urban overheating during HW periods, and possible interactions between the two phenomena are still an open question, despite the increasing frequency and impacts of Heatwaves (HW). The purpose of this study is to explore the interactions between urban overheating and HWs in Sydney, which is under the influence of two synoptic circulation systems. For this purpose, a detailed analysis has been performed for the city of Sydney, while considering an urban (Observatory Hill), in the Central Business District (CBD), and a non-urban station in Western Sydney (Penrith Lakes). Summer 2017 was considered as a study period, and HW and Non-Heatwave (NHW) periods were identified to explore the interactions between urban overheating and HWs. A strong link was observed between urban overheating and HWs, and the difference between the peak average urban overheating magnitude during HWs and NHWs was around 8 °C. Additionally, the daytime urban overheating effect was more pronounced during the HWs when compared to nighttime. The advective flux was found as the most important interaction between urban overheating and HWs, in addition to the sensible and latent heat fluxes.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13020470