A Ternary Model for Particle Packing Optimization
Powder packing in metal powders is an important aspect of additive manufacturing (otherwise known as 3-D printing), as it directly impacts the physical and mechanical properties of materials. Improving the packing density of powder directly impacts the microstructure of the finished 3D-printed part...
Gespeichert in:
Veröffentlicht in: | Journal of composites science 2022-04, Vol.6 (4), p.113 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Powder packing in metal powders is an important aspect of additive manufacturing (otherwise known as 3-D printing), as it directly impacts the physical and mechanical properties of materials. Improving the packing density of powder directly impacts the microstructure of the finished 3D-printed part and ultimately enhances the surface finish. To obtain the most efficient packing of a given powder, different powder blends of that material must be mixed to minimize the number of voids, irrespective of the irregularities in the particle morphology and flowability, thereby increasing the density of the powder. To achieve this, a methodology for mixing powder must be developed, for each powder type, to obtain the maximum packing density. This paper presents a model that adequately predicts the volumetric fraction of the powder grades necessary for obtaining the maximum packing density for a given powder sample. The model factors in the disparity between theoretical assumptions and the experimental outcome by introducing a volume reduction factor. We outline the model development steps in this paper, testing it with a real-world powder system. |
---|---|
ISSN: | 2504-477X 2504-477X |
DOI: | 10.3390/jcs6040113 |