Molecular interaction between three novel amino acid based deep eutectic solvents with surface active ionic liquid: A comparative study

Interaction between a surface active ionic liquid (IL) viz. 1-decyl-3-methylimidazolium chloride [Dmim][Cl] with three novel amino acid-based deep eutectic solvents (DES, consisting of choline chloride and l-methionine (DES1), l-phenylalanine (DES2), and l-glutamine (DES3) in a 1: 2 mol ratio) is st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-08, Vol.10 (15), p.e35598, Article e35598
Hauptverfasser: Banjare, Manoj Kumar, Barman, Benvikram, Behera, Kamalakanta, Khan, Javed Masood, Banjare, Ramesh Kumar, Pandey, Siddharth, Ghosh, Kallol Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interaction between a surface active ionic liquid (IL) viz. 1-decyl-3-methylimidazolium chloride [Dmim][Cl] with three novel amino acid-based deep eutectic solvents (DES, consisting of choline chloride and l-methionine (DES1), l-phenylalanine (DES2), and l-glutamine (DES3) in a 1: 2 mol ratio) is studied. Several techniques, including surface tension, fluorescence, UV–visible spectroscopy, and Fourier transform infrared (FTIR), were used to investigate the key micellar properties and intermolecular interactions between the IL and DESs. All the DESs studied here facilitate the micellization process successfully lowering the critical micelle concentrations (CMC) of [Dmim][Cl] with addition of 5 wt% and 10 wt% of DESs. In decreasing order of DES2 > DES1 > DES3, the affinity to promote IL [Dmim][Cl] aggregation within aqueous DES solutions. Additionally, the CMC values as well as the surface tension at CMC are both noticeably reduced significantly by DES2. The surface tension method determines how three amino acid-based DESs affect the CMC, Гmax, πCMC, Amin and pC20 of micellization. When IL [Dmim][Cl] forms micelles within DES solutions, the solvophobic effect predominates, and the intermolecular hydrogen-bond interaction helps to form micelles. FTIR was used to examine the molecular interactions and structural changes of the ionic liquid self-assemblies in aqueous DESs. The results show that the presence of DESs greatly aids in the micellization of [Dmim][Cl], and to a greater extent for DES2 than for DES1/DES3. The colloidal properties of DES and their mixtures are advantageous for the solubility, micellization, and other features of ionic liquids; further details on this positive observation are provided in the results and discussion. In the areas of micellization, CMC, synthesis, catalysis, and environmental, biological, and pharmaceutical applications, among others, DESs are extremely useful. Interaction of IL 1-decyl-3-methylimidazolium chloride with deep eutectic solvents (DES). [Display omitted] •Study the interaction of DmimCl with DES.•The CMCs values are reduced with the addition of DES order is DES2>DES1>DES3.•In increase in wt% of DES the spontaneity of aggregation of DmimCl is increased.•Fluorescence and UV–visible methods shows the confirm CMC values for all three DmimCl micellar systems.•Electrostatic, H- bonds, hydrophobic interactions, and van der Waal interactions were examined by FTIR.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e35598