DycSe: A Low-Power, Dynamic Reconfiguration Column Streaming-Based Convolution Engine for Resource-Aware Edge AI Accelerators

Edge AI accelerators are utilized to accelerate the computation in edge AI devices such as image recognition sensors on robotics, door lockers, drones, and remote sensing satellites. Instead of using a general-purpose processor (GPP) or graphic processing unit (GPU), an edge AI accelerator brings a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low power electronics and applications 2023-03, Vol.13 (1), p.21
Hauptverfasser: Lin, Weison, Zhu, Yajun, Arslan, Tughrul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Edge AI accelerators are utilized to accelerate the computation in edge AI devices such as image recognition sensors on robotics, door lockers, drones, and remote sensing satellites. Instead of using a general-purpose processor (GPP) or graphic processing unit (GPU), an edge AI accelerator brings a customized design to meet the requirements of the edge environment. The requirements include real-time processing, low-power consumption, and resource-awareness, including resources on field programmable gate array (FPGA) or limited application-specific integrated circuit (ASIC) area. The system’s reliability (e.g., permanent fault tolerance) is essential if the devices target radiation fields such as space and nuclear power stations. This paper proposes a dynamic reconfigurable column streaming-based convolution engine (DycSe) with programmable adder modules for low-power and resource-aware edge AI accelerators to meet the requirements. The proposed DycSe design does not target the FPGA platform only. Instead, it is an intellectual property (IP) core design. The FPGA platform used in this paper is for prototyping the design evaluation. This paper uses the Vivado synthesis tool to evaluate the power consumption and resource usage of DycSe. Since the synthesis tool is limited to giving the final complete system result in the designing stage, we compare DycSe to a commercial edge AI accelerator for cross-reference with other state-of-the-art works. The commercial architecture shares the competitive performance within the low-power ultra-small (LPUS) edge AI scopes. The result shows that DycSe contains 3.56% less power consumption and slight resources (1%) overhead with reconfigurable flexibility.
ISSN:2079-9268
2079-9268
DOI:10.3390/jlpea13010021