Anti-osteosarcoma trimodal synergistic therapy using NiFe-LDH and MXene nanocomposite for enhanced biocompatibility and efficacy
Osteosarcoma is usually resistant to immunotherapy and, thus primarily relies on surgical resection and high-dosage chemotherapy. Unfortunately, less invasive or toxic therapies such as photothermal therapy (PTT) and chemodynamic therapy (CDT) generally failed to show satisfactory outcomes. Adequate...
Gespeichert in:
Veröffentlicht in: | Acta pharmaceutica Sinica. B 2024-03, Vol.14 (3), p.1329-1344 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Osteosarcoma is usually resistant to immunotherapy and, thus primarily relies on surgical resection and high-dosage chemotherapy. Unfortunately, less invasive or toxic therapies such as photothermal therapy (PTT) and chemodynamic therapy (CDT) generally failed to show satisfactory outcomes. Adequate multimodal therapies with proper safety profiles may provide better solutions for osteosarcoma. Herein, a simple nanocomposite that synergistically combines CDT, PTT, and chemotherapy for osteosarcoma treatment was fabricated. In this composite, small 2D NiFe-LDH flakes were processed into 3D hollow nanospheres via template methods to encapsulate 5-Fluorouracil (5-FU) with high loading capacity. The nanospheres were then adsorbed onto larger 2D Ti3C2 MXene monolayers and finally shielded by bovine serum albumin (BSA) to form 5-FU@NiFe-LDH/Ti3C2/BSA nanoplatforms (5NiTiB). Both in vitro and in vivo data demonstrated that the 5-FU induced chemotherapy, NiFe-LDH driven chemodynamic effects, and MXene-based photothermal killing collectively exhibited a synergistic “all-in-one” anti-tumor effect. 5NiTiB improved tumor suppression rate from |
---|---|
ISSN: | 2211-3835 2211-3843 |
DOI: | 10.1016/j.apsb.2023.10.005 |