A study on the effects of fault architecture on fluid circulation in the Gediz Graben by the finite volume method

It is widely recognized that in geothermal fields, meteoric water infiltrates deep into the subsurface of the earth and then travels through cracks and fractures, returning to the surface as it becomes heated. The patterns of fluid flow are primarily determined by the interaction between forces driv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid earth sciences 2023-06, Vol.8 (2), p.146-159
1. Verfasser: Dogan, D. Dusunur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is widely recognized that in geothermal fields, meteoric water infiltrates deep into the subsurface of the earth and then travels through cracks and fractures, returning to the surface as it becomes heated. The patterns of fluid flow are primarily determined by the interaction between forces driven by gravity and pressure gradients. The ultimate forms of fluid flow patterns are primarily determined by the anisotropies of permeability associated with fault zones. In this study, a series of numerical simulations utilizing the finite volume approach were conducted to investigate the effects of fault zone architecture on fluid flow patterns and temperature distributions. Four distinct types of fault zone architecture were created in the simulations, including localized barrier, combined conduit-barrier, localized conduit, and distributed conduit. The results revealed that fault zone architecture has only a minor effect on fluid flow velocities and temperature distributions, except in cases along faults with very high permeabilities. The simulations suggest that this type of 2-D numerical modeling can be easily applied and utilized in other faulted geothermal systems.
ISSN:2451-912X
2451-912X
DOI:10.1016/j.sesci.2023.05.001