Existence of solution for a class of biharmonic equations
In this paper, We prove the solvability of the biharmonic problem $$\begin{cases}\Delta^{2}u=f(x,u)+h ~~~in~~\Omega, &\hbox{}\\ u=\Delta u=0 ~~~on ~~\partial\Omega,\\\end{cases}$$ for a given function $h\in L^2(\Omega)$, if the limits at infinity of the quotients $f(x,s)/s$ and $2F(x,s)/s$ for a...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Paranaense de Matemática 2014, Vol.32 (1), p.99-108 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, We prove the solvability of the biharmonic problem $$\begin{cases}\Delta^{2}u=f(x,u)+h ~~~in~~\Omega, &\hbox{}\\ u=\Delta u=0 ~~~on ~~\partial\Omega,\\\end{cases}$$ for a given function $h\in L^2(\Omega)$, if the limits at infinity of the quotients $f(x,s)/s$ and $2F(x,s)/s$ for a.e.$x\in\Omega$ lie between two consecutive eigenvalues of the biharmonic operator $\Delta^2$, where $F(x,s)$ denotes the primitive $F(x,s)=\int_{0}^{s}{f(x,t)dt}$. |
---|---|
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.v32i1.16178 |