REGRESSÕES ROBUSTA E LINEAR PARA ESTIMATIVA DE BIOMASSA VIA IMAGEM SENTINEL EM UMA FLORESTA TROPICAL
A preocupação com as mudanças climáticas globais tem motivado diversos pesquisadores a encontrar métodos eficazes para a quantificação de biomassa florestal e carbono estocado em florestas tropicais, uma vez que, estas atuam de forma mitigatória e compensatória desses efeitos. O sensoriamento remoto...
Gespeichert in:
Veröffentlicht in: | Biofix Scientific Journal 2019-06, Vol.4 (2), p.81-87 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng ; por |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A preocupação com as mudanças climáticas globais tem motivado diversos pesquisadores a encontrar métodos eficazes para a quantificação de biomassa florestal e carbono estocado em florestas tropicais, uma vez que, estas atuam de forma mitigatória e compensatória desses efeitos. O sensoriamento remoto tem sido utilizado de forma eficaz e com grande potencial para a estimativas em larga escala, com destaque para dados de Radar de Abertura Sintética (SAR) e imagens multiespectrais. Os estudos já desenvolvidos com essa finalidade utilizaram diversas técnicas para associar a biomassa acima do solo (AGB) com os dados obtidos por sensoriamento remoto, entretanto, a aplicação da regressão robusta ainda não está sendo utilizada para tal finalidade. Sendo assim, o objetivo do presente estudo é avaliar o desempenho da regressão robusta comparando com a regressão linear que é tradicionalmente utilizada, além de avaliar o potencial da utilização dos dados oriundos do satélite Sentinel 1 e 2. Neste âmbito, foram utilizadas imagens multiespectrais (Sentinel 2), imagem SAR (Sentinel 1) e como variável resposta a AGB obtida a partir de dados Light Detection and Ranging (LiDAR). A AGB foi estimada por dois métodos de regressão: robusta e linear. Os modelos de regressão robusta e linear apresentaram desempenho semelhante, com R²aj. variando entre 0,33 a 0,34, erro padrão da estimativa de 48 Mg.ha-1 e raiz do erro médio quadrático de 16%. Conclui-se que não houve diferença significativa entre a regressão linear e a regressão robusta para esse conjunto de dados, indicando que a regressão não é influenciada por possíveis outliers e que existe potencial na utilização de dados oriundos do satélite Sentinel. |
---|---|
ISSN: | 2525-9725 2525-9725 |
DOI: | 10.5380/biofix.v4i2.62922 |