Scale-dependent power law properties in hashtag usage time series of Weibo

We analyze the time series of hashtag numbers of social media data. We observe that the usage distribution of hashtags is characterized by a fat-tailed distribution with a size-dependent power law exponent and we find that there is a clear dependency between the growth rate distributions of hashtags...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-12, Vol.13 (1), p.22298-22298, Article 22298
Hauptverfasser: Jiang, Jiwei J., Yamada, Kenta, Takayasu, Hideki, Takayasu, Misako
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the time series of hashtag numbers of social media data. We observe that the usage distribution of hashtags is characterized by a fat-tailed distribution with a size-dependent power law exponent and we find that there is a clear dependency between the growth rate distributions of hashtags and size of hashtags usage. We propose a generalized random multiplicative process model with a theory that explains the size dependency of the fat-tailed distribution. Numerical simulations show that our model reproduces these size-dependent properties nicely. We expect that our model is useful for understanding the mechanism of fat-tailed distributions in various fields of science and technology.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-49572-6