Regio- and sequence-controlled conjugated topological oligomers and polymers via boronate-tag assisted solution-phase strategy

The regulation of polymer topology and the precise control over the monomer sequence is crucial and challenging in polymer science. Herein, we report an efficient solution-phase synthetic strategy to prepare regio- and sequence-controlled conjugated polymers with topological variations via the usage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-10, Vol.12 (1), p.5853-5853, Article 5853
Hauptverfasser: Xu, Chaoran, He, Congze, Li, Ning, Yang, Shicheng, Du, Yuxuan, Matyjaszewski, Krzysztof, Pan, Xiangcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The regulation of polymer topology and the precise control over the monomer sequence is crucial and challenging in polymer science. Herein, we report an efficient solution-phase synthetic strategy to prepare regio- and sequence-controlled conjugated polymers with topological variations via the usage of methyliminodiacetic acid (MIDA) boronates. Based on the solubility of MIDA boronates and their unusual binary affinity for silica gel, the synthesized regio- and sequence-defined conjugated oligomers can be rapidly purified via precipitation or automatic liquid chromatography. These synthesized discrete oligomers can be used for iterative exponential and sequential growth to obtain linear and dendrimer-like star polymers. Moreover, different topological sequence-controlled conjugated polymers are conveniently prepared from these discrete oligomers via condensation polymerization. By investigating the structure-property relationship of these polymers, we find that the optical properties are strongly influenced by the regiochemistry, which may give inspiration to the design of optoelectronic polymeric materials. The topology of polymers could be carefully controlled if the monomers were to be well-defined in sequence and regiochemical linkage. Here the authors present a method to synthesize oligomers of controlled sequence and regiochemistry, formed through iterative liquid-phase boronate-tagged syntheses, which are precursors to topologically distinct polymers.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-26186-y