Prediction of the effects of the top 10 nonsynonymous variants from 30229 SARS-CoV-2 strains on their proteins [version 2; peer review: 2 approved]
Background: SARS-CoV-2 virus is a highly transmissible pathogen that causes COVID-19. The outbreak originated in Wuhan, China in December 2019. A number of nonsynonymous mutations located at different SARS-CoV-2 proteins have been reported by multiple studies. However, there are limited computationa...
Gespeichert in:
Veröffentlicht in: | F1000 research 2022, Vol.11, p.9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: SARS-CoV-2 virus is a highly transmissible pathogen that causes COVID-19. The outbreak originated in Wuhan, China in December 2019. A number of nonsynonymous mutations located at different SARS-CoV-2 proteins have been reported by multiple studies. However, there are limited computational studies on the biological impacts of these mutations on the structure and function of the proteins.
Methods: In our study nonsynonymous mutations of the SARS-CoV-2 genome and their frequencies were identified from 30,229 sequences. Subsequently, the effects of the top 10 highest frequency nonsynonymous mutations of different SARS-CoV-2 proteins were analyzed using bioinformatics tools including co-mutation analysis, prediction of the protein structure stability and flexibility analysis, and prediction of the protein functions.
Results: A total of 231 nonsynonymous mutations were identified from 30,229 SARS-CoV-2 genome sequences. The top 10 nonsynonymous mutations affecting nine amino acid residues were ORF1a nsp5 P108S, ORF1b nsp12 P323L and A423V, S protein N501Y and D614G, ORF3a Q57H, N protein P151L, R203K and G204R. Many nonsynonymous mutations showed a high concurrence ratio, suggesting these mutations may evolve together and interact functionally. Our result showed that ORF1a nsp5 P108S, ORF3a Q57H and N protein P151L mutations may be deleterious to the function of SARS-CoV-2 proteins. In addition, ORF1a nsp5 P108S and S protein D614G may destabilize the protein structures while S protein D614G may have a more open conformation compared to the wild type.
Conclusion: The biological consequences of these nonsynonymous mutations of SARS-CoV-2 proteins should be further validated by in vivo and in vitro experimental studies in the future. |
---|---|
ISSN: | 2046-1402 2046-1402 |
DOI: | 10.12688/f1000research.72904.2 |