Comprehensive study and scientific process to increase the accuracy in estimating the thermal conductivity of nanofluids containing SWCNTs and CuO nanoparticles using an artificial neural network

This investigation aimed to evaluate the thermal conductivity ratio (TCR) of SWCNT-CuO/Water nanofluid (NF) using experimental data in the T range of 28–50 ℃ and solid volume fraction range of SVF = 0.03 to 1.15% by an artificial neural network (ANN). MLP network with Lundberg-Marquardt algorithm (L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micro and Nano Systems Letters 2024-12, Vol.12 (1), p.5-14, Article 5
Hauptverfasser: Esfe, Mohammad Hemmat, Amoozad, Fatemeh, Hatami, Hossein, Toghraie, Davood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This investigation aimed to evaluate the thermal conductivity ratio (TCR) of SWCNT-CuO/Water nanofluid (NF) using experimental data in the T range of 28–50 ℃ and solid volume fraction range of SVF = 0.03 to 1.15% by an artificial neural network (ANN). MLP network with Lundberg-Marquardt algorithm (LMA) was utilized to predict data (TCR) by ANN. In the best case, from the set of various structures of ANN for this nanofluid, the optimal structure was chosen, which consists of 2 hidden layers, the first layer with the optimal structure consisting of 5 neurons and the second layer containing 7 neurons. Eventually, for the optimal structure, the R 2 coefficient and MSE are 0.9999029 and 6.33377E-06, respectively. Based on all ANN information, MOD is in a limited area of − 3% 
ISSN:2213-9621
2213-9621
DOI:10.1186/s40486-023-00195-6